VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A--+ Grade ## B.E. (I.T.) IV-Semester Main & Backlog Examinations, July-2023 ## Design and Analysis of Algorithms Time: 3 hours Max. Marks: 60 Note: Answer all questions from Part-A and any FIVE from Part-B Part-A $(10 \times 2 = 20 \text{ Marks})$ | Q. No. | Stem of the question | M | L | СО | PO | |--------|---|---|---|----|-----| | 1. | Rank the following functions by decreasing order of growth: | 2 | 1 | 1 | 1 | | | $100n^2$, $(n+1)!$, $n*2^n$, $2^{\log 2n}+20$ | | | | | | 2. | Given a binary array arr[] of size N, which is sorted in non-increasing order, count the number of 1's in it. | 2 | 4 | 1 | 2 | | | Examples: | | | | | | | Input: $arr[] = \{1, 1, 0, 0, 0, 0, 0\}$
Output: 2 | | | | | | | Input: arr[] = {1, 1, 1, 1, 1, 1} | | | | | | | Output: 7 | | | | | | | Write a algorithm which takes better time complexity than O(n). | | | | | | 3. | Consider the sorting algorithms Merge sort, Quick sort, Selection sort. Which of these are stable algorithms? Explain with the help of an example. | 2 | 2 | 2 | 2 | | 4. | Given an array F with size n. Assume the array content F[i] indicates the length of the i th file and we want to merge all these files into one single file. Check whether the following algorithm gives the best solution for this problem or not? Justify your answer. | 2 | 3 | 2 | 2 | | | Algorithm: Merge the files contiguously. That means select the first two files and merge them, then select the output of the previous merge and merge with the third file and keep going | | | | | | 5. | Write the relax algorithm of Bellman ford. | 2 | 1 | 3 | 1 | | 6. | Explain what would happen if a dynamic programming algorithm is designed to solve a problem that does not have overlapping sub-problems. | 2 | 3 | 3 | 1 | | 7. | Does the following graph have a Hamiltonian cycle? Justify your answer. | 2 | 1 | 4 | 1 | | | (b) | | | | | | | | | | | | | | a | | | | | | | T I | | | | 1 | | | (c) | | | | *** | d f | | | | | | 8. | Compare backtracking approblem. | roach | with b | ranch | and bo | und approach | for solving a | 2 | 2 | 4 | 2 | |--------|--|---------------------------------|------------------------|----------------------------|---|---------------------------------|---------------|-------|---|---|---| | 9. | Write the non-deterministic | e algori | thm f | or kna | ipsack p | roblem. | | 2 | 3 | 5 | 2 | | 10. | Explain strategy to prove th | | | | | | f an example | 2 | 1 | 5 | 1 | | | | | | | Marks | | - sar sample. | | 1 | J | 1 | | 11. a) | Suppose you are choosing l | petween | n the f | follow | ing thre | ee algorithms: | | 4 | 3 | 1 | 2 | | | a) Algorithm A solves prob
the size, recursively solving
in linear time. | lems h | v divi | ding t | hem int | o five subment | L1 C1 1C | 970 1 | , | 1 | 2 | | | b) Algorithm B solves subproblems of size n - 1 ar | id then | comb | ining | the solu | itions in const | ant time | | | | | | | c) Algorithm C solves proble of size n/3, recursively so solutions in O(n^2) time. | ems of | size n | by div | vidinat | home into all | 1 11 | | | | | | | What are the running times which would you choose? | of each | of th | ese al | lgorithn | ns (in big-O no | otation), and | | | | | | b) | Define time and space condescribing the complexity? | nplexit | y? D | escrib | e asym | ptotic notatio | ns used for | 4 | 1 | 1 | 1 | | | Let $S = \{a, b, c, d, e, f, g\}$ by as follows: a: (12,4), b: (10, What are various strategie optimal solution to the fractionary hold abises S in the second strategies. | 6), c: (8
s chose
onal kn | 8,5), den to
ansacl | l: (11,
incor
k prob | 7), e: (1) porate | 14,3), 1: (7,1) a greediness? V | and g: (9,6). | 4 | 2 | 2 | 2 | | | can hold objects with total w | eight I | 8? W | hat is | the con | plexity? | iat Kliapsack | | | | | | b) | Apply Dijkstra's algorithm f
nodes A and H. | for the | follow | ving d | igraph a | and find the p | ath between | 4 | 2 | 2 | 3 | | | A 1 E 5 | B 6 | 2 | 6 | $\begin{array}{cccc} & 1 \\ 2 & 1 \\ & 1 \end{array}$ | D
4
H | | | | | | | 13. a) | Find the shortest tour of trav
dynamic programming. | elling s | salesp | erson | for the | following ins | tance using | 4 | 2 | 3 | 2 | | | | A | В | C | D | | | | | | | | | A | 00 | 12 | 5 | 7 | | | | | | | | | В | 11 | 00 | 13 | 6 | | | | | | | | | C | 4 | 9 | 00 | 18 | | - | | | | | | | | | | | 1.0 | | | | | | | | 100 | | | | | | |--------|---|---|---|---|---| | | Write an algorithm and find the shortest path between all pairs of nodes in the following graph. | 4 | 2 | 3 | 2 | | | 2 3 | | | | | | 14. a | | | | | | | | algorithm to print all paths from given 's' to 'd'. For example: Consider the following directed graph. Let the s be 2 and d be 3. There are 3 different paths from 2 to 3. | 4 | 4 | 4 | 3 | | | Below are all paths 'rom 2 to 3 2->1->3 2->0->3 2->0->3 2->0->1->3 | | | | | | b) | Explain Branch and Bound. Give LCBB solution for the following Knapsack - instance n = 4, (PI' P2, Ps' P4) = (10, 10, 12, 18), | 4 | 2 | 4 | 2 | | | (WI' W2, Ws' W4) = (2, 4, 6, 9) and $m = 15$. | | | | | | 15. a) | Explain in detail about classes P, NP, NP-Hard and NP-Complete with the help of an venn diagram. | 4 | 1 | 5 | 1 | | b) | Prove that clique decision problem is NP-Complete with the help of 3SAT. | 4 | 3 | 5 | 2 | | 16. a) | Solve the following two recurrence relations: | 4 | 2 | | | | | i) $T(n)=8T(n/2)+n^3$ using substitution method
ii) $T(n)=2T(n-1)+1$ using recursive tree method. | 7 | 2 | 1 | 2 | | | Check the same with Master's Theorem. | | | | | | b) | Given a sorted array arr[] with possibly duplicate elements, write a program to find indexes of the first and last occurrences of an element x in the given array with O(n) and O(logn) complexities. | 4 | 4 | 2 | 2 | | | Example: | | | | | | | Input: $arr[] = \{1, 3, 5, 5, 5, 5, 67, 123, 125\}, x = 5$ | | | | | | | Output : First Occurrence = 2 | | | | | | 1 | Last Occurrence = 5 | | | | | | 17. | Answer any | two of the | e following: | Table 2 | , | | | | | | | |-----|---|---|--|--|---|---|-----------------------------------|---|---|---|---| | a) | matrices wi
then A(B(C
life that the
matrix mult
the sequence | th appropr
D)) = A((E
total numb
ciplication
ee. Find the | iate dimension
BC)D) = (A(BC)
per of scalar procan vary significant
parenthesized | =ABCD where A, E
as: A(3 X 5), B(5 X
C))D = (AB)(CD) =
roducts executed if
ficantly depending
d scheme which to
ming approach. | (AB) C(8
= ((AB)C
n the cou | X 3), D(3)D. It is a farse of a church we parenth | X 4),
act of
ained
esize | 4 | 3 | 3 | 2 | | b) | numbers on | e. Write ar tiles to ma | algorithm us
tch the final co | y tile has one num
ing branch and bo
onfiguration using
and below) tiles i | und strat | egy to place y space. Yo | e the | 4 | 4 | 4 | 2 | | | For Exampl | | | | | 1 , 1 | | | | | | | ** | , and Emailip | | | | | | | | | | | | ı | Initial Co | nfiguratio | n | Final Conf | iguratio | n | | | | | | | | 1 | | 3 | 1 | 2. | 3 | | | | | | | | 4 | 2 | 5 | 4 | £ ; | 6 | | | | | | | | 7 | 8 | 6 | 7 | 8 : | c) | Differentiate | | | | | | | 4 | 2 | 5 | 1 | | | | | nd Non-detern
roblem and dec | ninistic
cision problem | | | | | | | | | | With the he | lp of an exa | ample. | | | | | | | | | M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome | i) | Blooms Taxonomy Level – 1 | 20% | |------|-------------------------------|-----| | ii) | Blooms Taxonomy Level – 2 | 40% | | iii) | Blooms Taxonomy Level – 3 & 4 | 40% | ****